3.85 \(\int (d+e x^n) \sqrt{a+b x^n+c x^{2 n}} \, dx\)

Optimal. Leaf size=292 \[ \frac{d x \sqrt{a+b x^n+c x^{2 n}} F_1\left (\frac{1}{n};-\frac{1}{2},-\frac{1}{2};1+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{\sqrt{\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1}}+\frac{e x^{n+1} \sqrt{a+b x^n+c x^{2 n}} F_1\left (1+\frac{1}{n};-\frac{1}{2},-\frac{1}{2};2+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{(n+1) \sqrt{\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1}} \]

[Out]

(e*x^(1 + n)*Sqrt[a + b*x^n + c*x^(2*n)]*AppellF1[1 + n^(-1), -1/2, -1/2, 2 + n^(-1), (-2*c*x^n)/(b - Sqrt[b^2
 - 4*a*c]), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/((1 + n)*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 +
 (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]) + (d*x*Sqrt[a + b*x^n + c*x^(2*n)]*AppellF1[n^(-1), -1/2, -1/2, 1 + n^(-1
), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2
- 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])

________________________________________________________________________________________

Rubi [A]  time = 0.355107, antiderivative size = 292, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {1432, 1348, 429, 1385, 510} \[ \frac{d x \sqrt{a+b x^n+c x^{2 n}} F_1\left (\frac{1}{n};-\frac{1}{2},-\frac{1}{2};1+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{\sqrt{\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1}}+\frac{e x^{n+1} \sqrt{a+b x^n+c x^{2 n}} F_1\left (1+\frac{1}{n};-\frac{1}{2},-\frac{1}{2};2+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{(n+1) \sqrt{\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^n)*Sqrt[a + b*x^n + c*x^(2*n)],x]

[Out]

(e*x^(1 + n)*Sqrt[a + b*x^n + c*x^(2*n)]*AppellF1[1 + n^(-1), -1/2, -1/2, 2 + n^(-1), (-2*c*x^n)/(b - Sqrt[b^2
 - 4*a*c]), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/((1 + n)*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 +
 (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]) + (d*x*Sqrt[a + b*x^n + c*x^(2*n)]*AppellF1[n^(-1), -1/2, -1/2, 1 + n^(-1
), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2
- 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])

Rule 1432

Int[((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Int[ExpandIntegran
d[(d + e*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4
*a*c, 0]

Rule 1348

Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n + c*x^(2*n))
^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[b^2 - 4*a*c, 2]))^F
racPart[p]), Int[(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]))^p, x], x] /
; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p]

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1385

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a +
 b*x^n + c*x^(2*n))^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[
b^2 - 4*a*c, 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt
[b^2 - 4*a*c]))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \left (d+e x^n\right ) \sqrt{a+b x^n+c x^{2 n}} \, dx &=\int \left (d \sqrt{a+b x^n+c x^{2 n}}+e x^n \sqrt{a+b x^n+c x^{2 n}}\right ) \, dx\\ &=d \int \sqrt{a+b x^n+c x^{2 n}} \, dx+e \int x^n \sqrt{a+b x^n+c x^{2 n}} \, dx\\ &=\frac{\left (d \sqrt{a+b x^n+c x^{2 n}}\right ) \int \sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}} \, dx}{\sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}}+\frac{\left (e \sqrt{a+b x^n+c x^{2 n}}\right ) \int x^n \sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}} \, dx}{\sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}}\\ &=\frac{e x^{1+n} \sqrt{a+b x^n+c x^{2 n}} F_1\left (1+\frac{1}{n};-\frac{1}{2},-\frac{1}{2};2+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{(1+n) \sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}}+\frac{d x \sqrt{a+b x^n+c x^{2 n}} F_1\left (\frac{1}{n};-\frac{1}{2},-\frac{1}{2};1+\frac{1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{\sqrt{1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}}}\\ \end{align*}

Mathematica [A]  time = 1.59531, size = 424, normalized size = 1.45 \[ \frac{x \left (2 (n+1) \left (a n \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^n}{\sqrt{b^2-4 a c}+b}} (2 c (2 d n+d)-b e) F_1\left (\frac{1}{n};\frac{1}{2},\frac{1}{2};1+\frac{1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}},\frac{2 c x^n}{\sqrt{b^2-4 a c}-b}\right )+\left (a+x^n \left (b+c x^n\right )\right ) \left (b e n+2 c \left (2 d n+d+e (n+1) x^n\right )\right )\right )-n x^n \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^n}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^n}{\sqrt{b^2-4 a c}+b}} F_1\left (1+\frac{1}{n};\frac{1}{2},\frac{1}{2};2+\frac{1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}},\frac{2 c x^n}{\sqrt{b^2-4 a c}-b}\right ) \left (-4 a c e (n+1)+b^2 e (n+2)-2 b c d (2 n+1)\right )\right )}{4 (n+1)^2 (2 c n+c) \sqrt{a+x^n \left (b+c x^n\right )}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d + e*x^n)*Sqrt[a + b*x^n + c*x^(2*n)],x]

[Out]

(x*(-(n*(-4*a*c*e*(1 + n) + b^2*e*(2 + n) - 2*b*c*d*(1 + 2*n))*x^n*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b -
 Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[1 + n^(-1), 1/2,
 1/2, 2 + n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])]) + 2*(1 + n)*((a + x
^n*(b + c*x^n))*(b*e*n + 2*c*(d + 2*d*n + e*(1 + n)*x^n)) + a*n*(-(b*e) + 2*c*(d + 2*d*n))*Sqrt[(b - Sqrt[b^2
- 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*A
ppellF1[n^(-1), 1/2, 1/2, 1 + n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])])
))/(4*(1 + n)^2*(c + 2*c*n)*Sqrt[a + x^n*(b + c*x^n)])

________________________________________________________________________________________

Maple [F]  time = 0.062, size = 0, normalized size = 0. \begin{align*} \int \left ( d+e{x}^{n} \right ) \sqrt{a+b{x}^{n}+c{x}^{2\,n}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d+e*x^n)*(a+b*x^n+c*x^(2*n))^(1/2),x)

[Out]

int((d+e*x^n)*(a+b*x^n+c*x^(2*n))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c x^{2 \, n} + b x^{n} + a}{\left (e x^{n} + d\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^n)*(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^(2*n) + b*x^n + a)*(e*x^n + d), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^n)*(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d + e x^{n}\right ) \sqrt{a + b x^{n} + c x^{2 n}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x**n)*(a+b*x**n+c*x**(2*n))**(1/2),x)

[Out]

Integral((d + e*x**n)*sqrt(a + b*x**n + c*x**(2*n)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c x^{2 \, n} + b x^{n} + a}{\left (e x^{n} + d\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x^n)*(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^(2*n) + b*x^n + a)*(e*x^n + d), x)